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On stochastic dynamics of supervised learning 

Giinter Radons 
lnstitut Rir lleoretische Physik, UniverSiBt Kiel. D-WOO Kiel, Federal Republic of Gennany 

Received 16 March 1993 

Abstract Recently Hansen et ai derived a Foker-Planck equation (m) for the leaming 
dynamics of neural networks, which diffea from a previously given version by Radons er 01. it 
is shown that the discrepancies are due to different implicit assumptions for the distribution of 
time intervals between the discrete leaming events. Both approximations are &fo& equally 
justified from a general point of view. The long-% pIopenies, however, m independent of 
this distribution and are in general more accurately described in the original m of Fadons et 
al. Especially, mean and variance of the synaptic parameter distributions are exact only in the 
latter approach. 

1. Introduction 

In a recent paper [I] Hansen et 01 derived a Fokker-Planck equation (FF%) for the dynamics 
of leaming in neural networks, which in some respects differs from the one given previously 
by Radons et ai [Z]. The purpose of this contribution is a thorough comparison of the two 
proposed equations with the goal of clarifying the origin of the differences. It will turn out 
that both approaches are correct and which one is appropriate is dependent on application. 

The main part of this paper is organized as follows. In section 2, we rederive our original 
W E  by invoking the general connection between discrete random walks and continuous time 
evolution equations of Bedeaux er ai [3]. This is an altemative to the systematic approach 
of Hansen er al, and provides us, e.g., with an understanding of the physical origin of 
the ‘spurious dependence on initial conditions’ observed in [l] for an exactly solvable 
model. This example is treated in detail in section 3, where we also show that the different 
stationary solutions of both approximations can both be exact for small leaming rates, though 
for different noise distributions. 

2. Learning as random-walk and continuous-time approximations 

Learning in neural networks leads to the following type of dynamical system: 

wn+l = wn + l~F(wn,Cd (1) 

where w, denotes the vector of synaptic parameters at the nth update, tn is the pattem 
vector presented at that instant and is the learning rate. For random and uncorrelated 
pattem presentation (1) describes a random walk in the parameter space of neural networks 
with a given structure. The probability density for synaptic parameters obeys [2] 

(2) 
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with 

where p(c)  is the probability density for pattems 5. Equation (2) can be rewritten in the 
form of a discrete ‘time’ master equation 

P,+,(w) - &(w) = [T(w I r~’)P,,(w’) - T(w’ I w)P,,(w)]dw‘. (4) 

Eventually one wants to replace differences in (4) by differentials to obtain a continuous 
time description. A consistent way for this has been achieved by Bedeau et a1 [3]: for that 
purpose one has to specify how the discrete learning events occur in continuous time, i.e. 
one has to assign times r,, to nth parameter update. There is some freedom in this choice. 
If the time differences Atn = tn+l - t. are drawn randomly from the distribution 

J 

@(At)  = rF1 exp(-At/rl) (5) 

the random walk (1) is exacrly described by the continuous time master equation 

with transition rate 

W(W I w’) = r;lT(w I w’) . (7) 

rI is the mean time difference between subsequent learning steps. In the following we set 
rl = 1 which means that we measure time t in units of 51. The probability distribution 
P(w,t) in (6) is now defined for all times t by P(w,t) = C z o @ ( n , t ) P ( w , n )  where 
@ ( n ,  r )  is the probability that exactly n learning steps have occured at time t. For the 
exponential density (5) one has @(n,  t) = ( l / n ! ) ( r / q ) ”  exp(-r/rl), and (6) with (7) follow 
from (4) and q ( a / a t ) @ ( n ,  t) = (1 - Sn.0). @(n - 1, t )  - @(n, t). For probability densities 
@(At) differing from the Poisson law (5). equation (6) becomes exact at long times. 
Especially, the stationary distribution P(w) of (2) and (6) are identical and independent 
of the law $. In the context of learning in neural networks the above approach was used 
recently by Heskes and Kappen in [4]. 

In a further step we exploit the fact that the transition rate W depends on the learning 
rate v which may be assumed to be small (v  (< 1). Thus one can write W as a power 
series in q [2]. This series, although similar to the Kramers-Moyal expansion [5],  differs 
from the latter in an important aspect: it is a systematic expansion with respect to a small 
parameter, and it is therefore allowed to truncate this series. Neglecting terms of order q3 
one obtains the Fokker-Planck equation of Radons et a1 [2,6] 

with 
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In contrast, Hansen et a1 obtain the same WE with Dkl(w) replaced by 

~ k i , , C W )  = ((Fk(6. w) - ( M 6 .  w))e)(F1({, w) - ( f i ( C 7  W ) ) P ) ) l .  (10) 

It will be shown below that mean value and fluctuations of the variable w are treated 
correctly in our FE. This and the above derivation show that~in general there is no need 
for introducing a mesoscopic time scale r as in [l]. It appears that the averaging over r 
is only necessary for $(At) = S(Ar - q) since otherwise one would not get a smooth, 
differentiable time evolution in this case. 

3. Exact results 

With the following exactly solvable example, also treated in [I], one can gain much insight 
into the physical implications of both proposed approaches and compare the quality of the 
co&ponding approximations. This one-dimensional example is defined by 

' F ( W , ~ ) = - W + ~  (11) 

which turns (1) into a simple linear iterated map with additive noise. Let us first consider 
properties of the problem which are independent of the assignment of the times tn. This are 
the stationary solution and related quantities. 

The exact asymptotic solution P(w) = limn-,m P,(w) of (2) with F as in (1 1) obeys 
the integral equation 

P(w) P ( w / ~  - ~ ' ( 1 -  q)/q)p(w') dw'/q . (12) s 
In terms of characteristic functions c ( k )  = J e ~ m P ( w )  dw and b(k)  one gets 

Hansen et al treated the case of a Gaussian density p(6) with variance U which, e.g. 
via (14) and Fourier transformation, results also in a Gaussian P(w) with variance E. The 
quantities and U &e related by 

(15) 

The stationary solution of the Fokker-Planck approximation (8) is obtained in one 
dimension as P(w) .= N .  o-*(w)exp(2S'.F(w')/D(w') dw'lq). For the example (ll), 
F(w) = -w (for (6) = 0) and D(w) = U' in the version of Hansen et a1 111. Thus 
their P E  yields also a Gaussian for P(w) with variance 7)uz/2, which means that their 
approximation becomes asymptotic ally^ exact in the I i i i t  q + 0. In contrast the W E  of 
Radons et a1 leads with D(w) =~ wz + U' to 

P(w) N . (wZ +U')-"'')-'~ (16) 
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where N is a normalization con@” 
There are several remarks to be made. Firstly, the WE of Hansen et al always leads to a 

Gaussian P ( w )  independent of the noise distribution p(6). Thus their stationary solution is 
approximate for all non-Gaussian ~ ( 6 ) .  This is important for learning in neural networks, 
since there the noise due to the random pattern presentation is typically non-Gaussian but 
rather bounded and discrete: The discreteness of p(6) may even lead to very irregular, 
multifractal equilibrium distributions as shown in [6]. 

Secondly, the variances X of P(w)  and U of p(6) are always exactly related as in (15), 
independently of the choice of ~ ( 6 ) .  This may be seen by differentiating (13) twice with 
respect to k. Since. 6 and p^ are moment generating functions [5], the result fork = 0 relates 
the moments of P and p as in (15). Now it is important to note that P ( w )  of (16) fulfills 
(15) exactly for all q where a stationary solution exists (i.e. 0 < 7 < 2). This follows from 
a direct calculation or from (21) below. As a consequence the divergence. of for q + 2 
is also correctly taken into account. This is the most one can expect from a Fokker-Planck 
approximation for a noise distribution not further specified with prescribed variance U,  since 
the tails of P (w)  and the higher moments depend on the explicit form of p(.$). It follows 
that in the allowed range of learning rates and for most p(6) the stationary solution of the 
FPE of Radons et a1 approximates to the exact solution better than the one of W e n  et al. 
For the quality of our W E  in the non-linear case see [6]. 

Thirdly, there is also a noise distribution p(6) where the stationary solution (16) becomes 
asymptotically exact for q -+ 0. This may be seen as follows. Solving (13) for B(k) and 
inserting the Fourier transform [71 $(k) = const. I k1’/2+1/n . Ki/~+t /~(ulkl )  of P ( w )  from 
(16) yields 

where K , ( x )  is the modified Bessel function of the t h i i  kind [8]. Expression (17) is the 
Fourier transform of a probability density if by Bccbner’s theorem [9] the right-hand side 
is positive-definite. Numerical Fourier inversion of (17) indicates that for 0 4 q < 2 &(&) 
is indeed the characteristic function of a density p,#) [lo]. Thus there exists for every 
density P (w)  of the form (16) a noise distribution p&) which exactly generates P (w)  as 
an invariant density of (2) with F(.$, w )  as in (11). p&) still depends on the learning rate 
q.  For q + 0, however, p&) becomes asymptotically independent of q.  This follows from 
the asymptotic expansion of K&) for large orders and large arguments [SI. One obtains 

which is the characteristic function of the probability density [7] 

1[(1+ 6*/U2)’/21. (19) 
e 

p(6)  = ; (1 + P / U 2 ) - ” 2  K 

This density decays exponentially as exp[-ltl/u + O(ln(6))l for large 6 and plays the 
same role for P(w) of (16) as the Gaussian density does for the Gaussian law P ( w )  in 
the approximation of Hansen et al. For comparison both distributions p(E) are. depicted in 
figure 1. We see that the stationary distributions of both approaches can become exact in 
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Figure 1. The noise distribution p(<), equation (19). for whicli Lhe stationary solution (16) 
becomes eltad at small leaming rates is depicted (full curve). For comparison the broken curve 
is the Gaussian density p(E) which results in the slationary solution of the FPE of Hansen et 01 
for I? < 1. 

the limit q + 0, and therefore from this point of view none of the two approximations is 
preferable. 

= wP(w, t )  dw and 
variance Z(t)  = ( w ~ ) ~  - (w): of the synaptic parameters. From the FPE (8) with (9) one 
obtains for the. exactly solvable example (11) 

Now we tum to the dynamical evolution of mean w ( f )  = 

w(t )  = w(0)e-nr (20) 

and 

C( t )  = - uzq (1 - e-m-0)9 + wz(0)(e-n(z-s)t - e-2rlr)). (21) 

Note that in [I] the prefactor uzq/(2 - q )  is incorrectly stated as u2q/2 (in their 
equation (29)). The correct version may also be found in [4], who treat the same example 
under the name Grossberg learning. In contrast, the FPE of Hansen et a1 yields a different 
result for the variance 

2-V  

where q in this notation is not absorbed in the time scale. 
First, we can see from (21) that for t  + 00, E(t)  approaches the exact limit Z of (15). 

This happens by no means accidentally but is a consequence of the fact that (21) is exuct 
for all times f and for all q! This is true since (20) and (21) can also be derived from 
the continuous-time master equation (6). Moreover, this coincidence is not restricted to the 
special example above but also true for the general multidimensional. non-linear case: with 
respect to mean and variance our W E  (8) with (9) is not an approximation to the continuous- 
time master equation (6) but equivalent. This was already correctly stated in [4]. 
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At this stage it is appropriate to remember that in deriving (6) one utilizes the freedom 
of regarding the update events as being generated by a Poisson process in continuous time. 
Again, for different choices of the interval distribution such as  at) = S(At - q), which 
means equal time intervals rl between updates, the variance C(t )  of (21) becomes exact 
at large times in a well defined way 131. Further, we recognize now the physical origin of 
what the authors of [I] call a ‘spurious dependence on the initial conditions’ of E: E(?) 
splits into two parts: 

z‘:(t) = z ’ p ( 0  + E $ ( t )  (23) 

where the second term E$, which survives for U = 0, simply reflects the randomness in 
the times t,, of the pattem presentations! In contrast Z p  stems f” the randomness in 
choosing a member from the pattem ensemble p at a given time tn. It tums out that both 
contributions increase linearly at short times E@) = q2(u2 + ~’(0)) . t (i.e. fluctuations in 
w increase as f1I2 in accordance with the general theory of stochastic processes [5] )  and 
that &(t)  decays exponentially at large times t. z‘* is negligible only for t >> 1/11, where 
at the same time has almost reached its asymptotic value z’ of (15). This remains true 
for arbitrary small values of the learning rate 11. Conversely, for t c l /q the variance E(?) 
is always significantly affected by the choice of the interval dishibution +(At)  since z‘$ 
and X p  are of the same order. 

These remarks explain the different forms for E(?). Equation (22) is obtained for the 
special choice *(At )  = S(At - 7,) in the limit of small 9. In this case there are no 
fluctuations in Ar = r, - and therefore E&) vanishes identically for all times t. For 
all other distributions * one expects a contribution E$@) similar to the one in (21). 

4. Summary 

We have seen that the evolution of an ensemble of neural networks is strongly influenced by 
the way the discrete learning events are distributed in continuous time. There is no 4 priori 
prescription for this assignement, which results in an ambiguity in the dynamical behaviour 
in physical time. Correspondingly. different choices for the time interval distribution lead 
to different Fokker-Planck approximations as those presented in [I] and [ Z ] .  None of them 
is preferable from this point of view. The long-time behaviour of the network ensemble, 
however, is not affected by the above choice. The resulting stationary parameter distributions 
are more accurately described in the approach of Radons et a1 [2,6] since in addition to 
the mean, the variance is also exact in this version, whereas the results of Hansen et 41 are 
valid only at small learning rates. Finally we mention that the given arguments and results 
are not restricted to supervised learning but also apply to unsupervised learning processes 
such as Kohonen’s self-organizing maps 1111. 
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